Small System Treatment Technology Selection

Does the System Really Want to Be in the Water Treatment Business?

Alternatives to Treatment

- Improve Source Water Protection
- Improve System Operation and Maintenance (O & M)
- Switch to Higher Quality Source
- Purchase Water
- Consolidate

Go Forward with Treatment Selection if No Practical and Economically Attractive Alternatives to Treatment of a Current or New Water Source Exist

Factors Influencing Treatment Selection

- System Characteristics
- Impact of Upcoming Rules
- Characteristics of Proposed Treatment(s)

Compliance Timeline

Characteristics of Proposed Treatment(s)

- Ability to Reliably Achieve Compliance
- Costs (Capital, O&M, Waste Disposal)
- Complexity and Flexibility
- Environmental Compatibility

System Characteristics

- CWS, surface water, serves 2,500
- Conventional filtration with chlorine disinfection
- Raw TOC averages 3.2 mg/l
- Alkalinity averages 95 mg/l

Compliance Concerns

- TTHMS average 0.085 mg/l
- Treated TOC averages2.3 mg/l
- Turbidity is not less than0.3 NTU 95% of the time
- Turbidity excursions on individual filters

Observations

- Must reduce finished water TOC
- Address turbidity

Treatment Options Analysis -

water protection

Conventional Treatment

Pros:

- Removal capabilities
- Ability to treat
 source waters of
 low or inconsistent
 quality

- Advanced operator
- Adequate land
- High costs
- Sludge disposal

Membrane Filtration

- RO, NF, UF, MF
- Pros:
 - Removal capabilities
 - Size and flexibility
 - Intermediate operator

- Water rejection (RO & NF)
- Pre-treatments
- Waste disposal (RO & NF)
- High costs

Ion Exchange

• Pros:

- High removal rates
- Low cost
- Intermediate operator

- Co-contaminants
- Brine disposal

Disinfection

- I. Type
 - Chemical
 - Chlorine
 - Chloramines
 - Chlorine Dioxide
 - Ozone
 - Non-chemical
 - UV
 - Membranes
- II. Purpose
 - Primary
 - Secondary

Chemical Disinfection

Pros:

- Compliance with GW and TC rules
- Low cost (chlorine, chloramines)
- Oxidation

- DBP formation (especially chlorine, chlorine dioxide)
- Additional disinfectant (ozone, chloramines)
- Handling dangerous chemicals

Ultraviolet Light Disinfection

Pros:

- No THM precursors
- Easy & safe operation
- Generally low cost

- No residual disinfectant
- Not appropriate for waters high in TSS or turbidity
- High doses required for cyst inactivation will increase costs

Granular Activated Carbon

Pros:

- Effective removal of SOCs, VOCs, Radon
- Improved aesthetic quality
- Relatively low cost

- Co-contaminants may interfere with adsorption of selected contaminants
- GAC must be replaced periodically

Centrally Managed POU

Pros:

Generally more cost effective for very small systems

- Significant maintenance, oversight, and customer education required
- Not approved for microbial removal

Centrally Managed POE

Pros:

Generally more cost effective for very small systems

- Significant
 maintenance,
 oversight, and
 customer education
 required
- Some states may restrict disposal options for certain devices

